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A method is proposed for restoring the heat flux density on the boundary of a body ~- 
which consists of the sequential solution of the direct problem for an adequate 
complex model and the invserse problem for a simplified heat transmission model. 

Utilization of inverse heat-transfer problem(IHTP) methods permits raising the infor- 
mativity of investigtions in the thermal design of installations and structures. The develop- 
ment of regularized algorithms [i, 2] to solve IHTP contributed to their rapid and effective 
insertion into the practice of theoretical-experimental research in the area of heat transfer. 
Nevertheless a number of difficulties exist that constrain the applicability of IHTP method 
to solving specific problems. In particular, the question of the selection of the mathemati- 
cal model of the heat transmission process is essential. The application of a simple mathe- 
matical model realized comparatively easily in the construction of the restoration algorithm 
for the causal characteristic and requiring moderate machine time expenditures can result in 
an unallowable loss of accuracy that is moreover magnified by possible incorrectness of the 
formulation. Utilization of a more accurate, adequate model assumes, as a rule, a signifi- 
cant complication in the algorithm and an increase in the numerical computation time of an 
electronic computer. 

FOr this reason, the development of an algorithm that simultaneously utilizes two models 
(simplified and exact) of an identical process in the solution of the IHTP is logical. 

It should be noted that the proposed method is substantially a modification of successive 
approximations [3]. 

Its crux is the following. Let q be the desired causal characteristic of the heat con- 
duction process (for instance, it can be the heat flux density going into the body), and f 
the temperature at an inner point. We assume there are two models of the process connecting 
the cause and effect 

^ ^ 

q~f, q~f', (1) 
where the subscripts c and y denote the complex and simplified models, respectively. In 
operator form (i) will be 

=~cq, ~' =Ms,q, (2) 
where t h e  o p e r a t o r s  ~c and Ms cor respond  to  t h e  d i r e c t  h e a t  conduc t ion  problems f o r  t h e s e  
models. Thus, for the linear problems these operators are Duhamel integral convolutions. 

The value of the temperature f' is determined from the simplified model with a certain 
error e relative to the quantity f which we shall consider exact because of the adequacy of 
the complex model 

f' = f ( 1  q-e). (3) 
Taking account of (2) 

?~4sq A?Icq 
e -- (4) 

The inverse heat-conduction problem requires searching for the cause according to its 
implied appearance: 

q = ~ j l f .  (5) 
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However, the solution of the IHTP is not expedient in such a form since, as noted above, the 
direct utilization of the exact model in this case is fraught with extreme complexity of the 
algorithmization and much machine time. Under such conditions the application of the simpli- 
fied model is justified 

q = AT/g~: ' = ME ~ [/(1 + a)l. (6)  

The e x p r e s s i o n s  (4)  and (6)  a f f o r d  a p o s s i b i l i t y  o f  o r g a n i z i n g  an i t e r a t i v e  p r o c e d u r e  
to search for the quantity q: 

( n + I )  

q - -Af~ ~[ [ (1+%)1,  n = 0 ,  1, 2 . . . . .  (7)  

where the correction e n is sought form the formula 

^ ( n )  ~ ( n )  

Msq --M~q (8)  
^ ( n )  

Me q 

Combining (7) and (8) we obtain 

^ (10 

(n+1) i f  q = ~ s l  M sq  -1 j n = 0 .  1. 2. (9)  
( n )  ' " ' "  ' 

L Me q 

where f is the input data for the IHTP. 

In contrast to formulation (5), the solution of the IHTP is assumed for the simplified 
model in the iterative procedure (9), however, with correctable input data. Utilization of 
the complex adequate model occurs at each iteration by solving the direct heat-conduction 
problem. 

Let us estimate the efficiency of the algorithm form the viewpoint of economy of machine 
time if gradient minimization of the functional is used as the method to solve the inverse 
probem. Firstly, let us note that the necessary condition for the efficiency of the proce- 
dure (9) is large dimensionality of the complex model as compared with the simplified model. 
For definiteness, let the model Mc be two-dimensional (in the coordinates x and y), and the 
model M s one-dimensional (in the coordinate x). Correspondingly, for the numerical realiza- 
tion the difference equations for these models are written in the meshes (n~ • n I x n2) and 
(n~ • nl), where n~, nl, n 2 are the number of steps in time and in the coordinates x and y, 
respectively. To obtain acceptable accuracy of the solution, let N s steps of the iteration 
search for the minimum point of the functional also be required~ Assuming the machine time 
expenditure in factorization in one coordinate to be proportional, with coefficient k, to 
the number of steps in this coordinate, we obtain t 1% n~kn I is the time to solve the direct 
problem for the simplified model, and t 2 % n~2knln 2 is the time to solve the direct problem 
for the complex model (here the factor 2 appears because of the separate integrations over 
the coordinates x and y), t 3 % 3NsnTkn I is the time to solve the inverse problem by the 
simplified model, where the factor 3 reflects the fact that the solution of three problems, 
direct, conjugate, and in increments, occurs in each iteration, and t 4 % 3NsnT2knln 2 is the 
time to solve the inverse problem by the complex model. 

Also taking into account that the algorithm (9) is itself an iteration (we call this 
process iteration in the models), and consisting N m the number of iterations necessary to 
correct the input data, we obtain an expression for the ratio n of the machine time expen- 
ditures when using procedures (5) and (9): 

t~ 6NJ~z 
Nm(t~+t,+ta) N~(1 + 2n2 + 3N~) 

where if it is taken into account that n2, N S > i, then 

6 i V  j l ;  2 

~1 ~-- N,,i'(2n., + 3N,) 

1477 



I 

I \2 
Fig. i. Electrode location in a cylindri- 
cal body: i) body; 2) electrode. 
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Fig. 2. Domains of solution of the two-dimensional 
(a) and one-dimensional (b) thermal problems. 

The application of (9) to solve the IHTP will evidently be efficient for q > i. In 
particular, this condition is satisfied for N m < N s < n 2. In practice, this means the 
following. Firstly, the solution of the direct problem by the simplified model should not 
differ too radically from the corresponding solution using the complex model. It is diffi- 
cult to estimate the limits of this difference quantitatively. Intuitively, however, it 
can be assumed that if the function e from (8) is smooth and constant in sign, then the 
iteration in the models will be rapidly convergent and, therefore, the quantity N m turns out 
to be small in this case. Secondly, the desired solution should possess complex behavior 
since the process of clarifying fine structural singularities of the solution will require a 
significant quantity of steps for the gradient descent. This circumstance also results in 
the requirement for high accuracy of the input information since, otherwise, for large N s 
fluctuations can appear in the solution while the halt in the iteration process acording to 
the condition of agreement between the residual and the input information error for small N s 
will not yield a gain in time when using the algorithm (9). 

The question of for which sets {Ms, ~c} the mapping (9) is compressive, from which the 
existence and uniqueness of the solution follows, has not been investigated theoretically 
since it is an independent complex problem requiring reliance on special mathematical 
apparatus [3], however certain intuitive considerations relative to the selection of ~s are 
examined above. 

Presented below is an example of the specific realization of the algorithm (9) that 
shows the validity of these considerations. 

Let us consider a cylindrical body of radius R and length L to one of whose endfaces a 
thermal flux, identical for all sections of the surface but variable in time, is delivered. 
A hole of radius r 0 is drilled at the center of the cylinder under the electrode of a thermo- 
couple of radius r e for the measurement of the temperature at an internal point at a distance 
h from the heating surface. We consider the body itself the second electrode of the thermo- 
couple (Fig. i). The problem is: Determine the thermal flux density passing through the 
surface into the body within the time interval [0, T m] from the t hermocouple readings. 
For simplicity, we consider thermal perturbations on the remaining surfaces to be zero. 

Mathematically the heat conduction problem in cylindrical coordinates (Fig. 2a) will 
have the form 

91c~ 0"~ ~7-0--7" k Or ] q -  0z 2 ],  0 < T < T m ,  i = 1 ,  2, (10)  
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Fig. 3. Dependence of the error in solving 
the direct problem on the time: i) q(z) = 106 
W/m2; 2) q(T) = 106 exp (--2500 2) W/m 2. 

0 

a 

qt q2 q3 o,~ 

! b 

o o/ qz o,3 ,~ 

Fig. 4. Restoration of the thermal flux density of 
the complex (a) and simple (b) behavior, i) Actual 
solution; 2) initial approximation; 3) fourth itera- 
tion in models. 

T~l~=o = 0, i =  ], 2, (11) 

-- ~I aT1 [ 
a z  Iz=o = q ( ~ ) '  (12) 

aTI]  = aT,_ = aT1. i -- aTe. ! = aT2 I =0 ,  (13) 
Or r=o  Or r=R 01" r . . . . .  >h 0 f  r=0  Of r=re 

az z=h,%<r<~o az z=L Oz 

arl = ~,2 aT2 , (Ta  - -  T2)[z=h, :<:e = 0, (15) 

where T i = Ti(r, z, ~) is the temperature field, Pi is the density, c i is the specific heat, 
and ki is the heat conduction coefficient. The subscripts 1 and 2 denote that the symbols 
belong to the body and electrode, respectively. 

We consider the two-dimensional heat conduction model (10)-(15), that takes account of 
the perturbing action of the thermal electrode on the temperature field, adequate (complex). 

We now consider the heat conduction model in this body without taking account of the 
presence of the temperature sensor (Fig. 2b): 

aT~ _%~ O~T~ 0 < T < T m ,  0 < z < L ,  (16) 9~c~ O'c Oz ----T' 

aT1 
- -  x l  az 2=o = q ("c)' 

(17) 

TI[r  = O, (18) 

aT ~=L = o, (19) 
' a z  

where T I = T1(z , ~) is the temperature field in the body. 
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It is natural to consider the one-dimensional heat conduction problem (16)-(19) a simpli- 
fied model of this heat transfer process. 

The following values of the parameters were selected in the computations: L = 2 • 10 -2 
m, R = i0 -z m, r o = 5.10 -4 m, r e = 10 -4 m, h = 10 -3 m, ~m = 0.4 sec. Steel 45 was taken as 
material of the body and chromel as the electrode material. The properties of these materials 
are taken from [4]. 

The problems (10)-(15) and (16)-(19) were approximated for numerical realization by 
finite-difference equations [5] with the number of steps n T = 40, n r = n z = 30. 

The error determined by the expression (3) is presented in Fig. 3 for certain depen- 
dences of the thermal flux density. It is seen that application of the simplified model 
(16)-(19) results in a 10-20% error in solving the direct problem, which is constant in sign 
and a sufficiently smooth function of the time. 

To confirm the operability of the algorithm (9) we consider the IHTP data f(~) the 
solution of the direct heat-conduction problem (10)-(15) with a certain model thermal flux 
density q(~). 

The inverse problem was formulated in an external formulation in each iteration by the 
model (16)-(19) and minimization of the functional was performed by the method of conjugate 
gradients with the search halted by the condition of "merger" of the approximations. 

Results of solving the IHTP by using the procedure (9) are represented in Fig. 4. It 
is seen that 4-5 iterations in the models is sufficient to obtain the desired function with 
good accuracy in this case. Expenditures of ES-1022 machine time per iteration were 26 min 
for the thermal flux density determination of a nontrivial structure (Fig. 4a) for which 25 
steps of gradient descent were required and the computation yields the value q = 8 for this 
value of N s, which means and eightfold savings in machine time. To retrieve a smooth de- 
sired function (Fig. 4b) it turned out to be sufficient to make just four steps, in this case 
q = 2, this is the savings in machine time is 50% and is not so substantial. These results 
confirm therefore the assumption that the algorithm (9) is efficient for solving the IHTP to 
restore the complex, in particular, rapidly varying functions of the time, however, under 
conditions of high accuracy of the experimental tempratures. 

NOTATION 

T, temperature field; r, z, cylindrical coordinates; T, running time; ~c, Ms' operators 
of the complex and simplified models, respectively; f, input temperature; q, thermal flux 
density delivered to the body boundary; Nm, number of iterations in the models; Ns, number 
of gradient descent steps; and q, index of machine time saving. 
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